On skeletally factorizable spaces

Marta Martynenko

Lviv, Ukraine

Winter School in Hejnice 26th January – 2nd February 2013

This is equivalent to saying that:

for each non-empty open set $U \subset X$ the closure f(U) has non-empty interior in Y.

- each open map is skeletal;
- the identity map from the Sorgenfrey line onto the real line is skeletal but not open.

This is equivalent to saying that:

for each non-empty open set $U \subset X$ the closure f(U) has non-empty interior in Y.

- each open map is skeletal;
- the identity map from the Sorgenfrey line onto the real line is skeletal but not open.

This is equivalent to saying that:

for each non-empty open set $U \subset X$ the closure $\overline{f(U)}$ has non-empty interior in Y.

- each open map is skeletal;
- the identity map from the Sorgenfrey line onto the real line is skeletal but not open.

This is equivalent to saying that:

for each non-empty open set $U \subset X$ the closure $\overline{f(U)}$ has non-empty interior in Y.

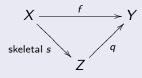
- each open map is skeletal;
- the identity map from the Sorgenfrey line onto the real line is skeletal but not open.

This is equivalent to saying that:

for each non-empty open set $U \subset X$ the closure $\overline{f(U)}$ has non-empty interior in Y.

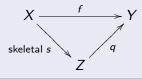
- each open map is skeletal;
- the identity map from the Sorgenfrey line onto the real line is skeletal but not open.

A topological space X is defined to be skeletally factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ s$ of a skeletal map $s: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:



- A Tychonoff space X is skeletally factorizable if the set D_X of isolated points of X is countable and dense in X.
- Any compactification $c\mathbb{N}$ of \mathbb{N} is skeletally factorizable.

A topological space X is defined to be skeletally factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ s$ of a skeletal map $s: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:

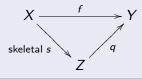


Example

- A Tychonoff space X is skeletally factorizable if the set D_X of isolated points of X is countable and dense in X.
- Any compactification $c\mathbb{N}$ of \mathbb{N} is skeletally factorizable.

(E)

A topological space X is defined to be skeletally factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ s$ of a skeletal map $s: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:



Example

- A Tychonoff space X is skeletally factorizable if the set D_X of isolated points of X is countable and dense in X.
- Any compactification $c\mathbb{N}$ of \mathbb{N} is skeletally factorizable.

프 > < 프 >

A topological space X is defined to be openly factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ p$ of an open map $p: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:

Each openly factorizable space is skeletally factorizable.

Example

- The ordinal segment $[0, \omega_1]$ is openly factorizable.
- The connected long line $[0, \omega_1]$ is not skeletally factorizable.
- The Stone-Čech compactification βN of integers is skeletally factorizable but not openly factorizable.

白 ト く ヨ ト く

A topological space X is defined to be openly factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ p$ of an open map $p: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:

Each openly factorizable space is skeletally factorizable.

Example

- The ordinal segment $[0, \omega_1]$ is openly factorizable.
- The connected long line $[0, \omega_1]$ is not skeletally factorizable.
- The Stone-Čech compactification βN of integers is skeletally factorizable but not openly factorizable.

/□ ▶ < 글 ▶ < 글

A topological space X is defined to be openly factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ p$ of an open map $p: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:

Each openly factorizable space is skeletally factorizable.

Example

- The ordinal segment $[0, \omega_1]$ is openly factorizable.
- The connected long line $[0, \omega_1]$ is not skeletally factorizable.
- The Stone-Čech compactification βN of integers is skeletally factorizable but not openly factorizable.

白 ト イヨ ト イ

A topological space X is defined to be openly factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ p$ of an open map $p: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:

Each openly factorizable space is skeletally factorizable.

Example

- The ordinal segment $[0, \omega_1]$ is openly factorizable.
- The connected long line $\overline{[0, \omega_1]}$ is not skeletally factorizable.
- The Stone-Čech compactification βN of integers is skeletally factorizable but not openly factorizable.

A topological space X is defined to be openly factorizable if each map $f: X \to Y$ to a second countable space Y can be written as the composition $f = q \circ p$ of an open map $p: X \to Z$ onto a second countable space Z and a map $q: Z \to Y$:

Each openly factorizable space is skeletally factorizable.

Example

- The ordinal segment $[0, \omega_1]$ is openly factorizable.
- The connected long line $\overline{[0, \omega_1]}$ is not skeletally factorizable.
- The Stone-Čech compactification βN of integers is skeletally factorizable but not openly factorizable.

Theorem (Banakh-Dimitrova, 2010)

The Stone-Čech compactification βX of a Tychonoff space X is openly factorizable if and only if X is pseudocompact and openly factorizable.

Theorem (M., 2012)

For a Tychonoff space X the following conditions are equivalent:

- 1) X is skeletally factorizable;
- 2) there is a skeletally factorizable space Y with $X\subset Y\subseteta X$;
- 3) each space Y, $X \subset Y \subset \beta X$, is skeletally factorizable;
- 4) βX is skeletally factorizable.

Corollary

The Stone-Čech compactification βD of a discrete space D is skeletally factorizable if and only if $|D| \leq \aleph_0$.

Theorem (Banakh-Dimitrova, 2010)

The Stone-Čech compactification βX of a Tychonoff space X is openly factorizable if and only if X is pseudocompact and openly factorizable.

Theorem (M., 2012)

For a Tychonoff space X the following conditions are equivalent:

- 1) X is skeletally factorizable;
- 2) there is a skeletally factorizable space Y with $X \subset Y \subset \beta X$;
- 3) each space Y, $X \subset Y \subset \beta X$, is skeletally factorizable;
- 4) βX is skeletally factorizable.

Corollary

The Stone-Čech compactification βD of a discrete space D is skeletally factorizable if and only if $|D| \leq \aleph_0$.

Theorem (Banakh-Dimitrova, 2010)

The Stone-Čech compactification βX of a Tychonoff space X is openly factorizable if and only if X is pseudocompact and openly factorizable.

Theorem (M., 2012)

For a Tychonoff space X the following conditions are equivalent:

- 1) X is skeletally factorizable;
- 2) there is a skeletally factorizable space Y with $X \subset Y \subset \beta X$;
- 3) each space Y, $X \subset Y \subset \beta X$, is skeletally factorizable;
- 4) βX is skeletally factorizable.

Corollary

The Stone-Čech compactification βD of a discrete space D is skeletally factorizable if and only if $|D| \leq \aleph_0$.

A space X is scattered if each subspace of X has an isolated point.

A point x of topological space X is a *P*-point if for any neighborhoods $U_n \subset X$, $n \in \omega$, the intersection $\bigcap_{n \in \omega} U_n$ is neighborhood of x in X.

Theorem (Banakh-Dimitrova, 2010)

A scattered (linearly ordered) compact space X is openly factorizable if (and only if) each point $x \in X$ is either a G_{δ} -point or a P-point.

Theorem (Banakh-M., 2012)

A scattered compact Hausdorff space X is skeletally factorizable iff each non-P-point $x \in X$ lies in G_{δ} -subset $G \subset X'$ of X, where X' is the set of all non-isolated points of X.

- The segment of ordinals [0, κ] is openly factorizable.
- The one-point compactification αD of an uncountable discrete space D is not skeletally factorizable.

A space X is scattered if each subspace of X has an isolated point. A point x of topological space X is a *P*-point if for any neighborhoods $U_n \subset X$, $n \in \omega$, the intersection $\bigcap_{n \in \omega} U_n$ is neighborhood of x in X.

Theorem (Banakh-Dimitrova, 2010)

A scattered (linearly ordered) compact space X is openly factorizable if (and only if) each point $x \in X$ is either a G_{δ} -point or a P-point.

Theorem (Banakh-M., 2012)

A scattered compact Hausdorff space X is skeletally factorizable iff each non-P-point $x \in X$ lies in G_{δ} -subset $G \subset X'$ of X, where X' is the set of all non-isolated points of X.

- The segment of ordinals [0, κ] is openly factorizable.
- The one-point compactification αD of an uncountable discrete space D is not skeletally factorizable.

A space X is scattered if each subspace of X has an isolated point. A point x of topological space X is a *P*-point if for any neighborhoods $U_n \subset X$, $n \in \omega$, the intersection $\bigcap_{n \in \omega} U_n$ is neighborhood of x in X.

Theorem (Banakh-Dimitrova, 2010)

A scattered (linearly ordered) compact space X is openly factorizable if (and only if) each point $x \in X$ is either a G_{δ} -point or a P-point.

Theorem (Banakh-M., 2012)

A scattered compact Hausdorff space X is skeletally factorizable iff each non-P-point $x \in X$ lies in G_{δ} -subset $G \subset X'$ of X, where X' is the set of all non-isolated points of X.

- The segment of ordinals [0, κ] is openly factorizable.
- The one-point compactification αD of an uncountable discrete space D is not skeletally factorizable.

A space X is scattered if each subspace of X has an isolated point. A point x of topological space X is a *P*-point if for any neighborhoods $U_n \subset X$, $n \in \omega$, the intersection $\bigcap_{n \in \omega} U_n$ is neighborhood of x in X.

Theorem (Banakh-Dimitrova, 2010)

A scattered (linearly ordered) compact space X is openly factorizable if (and only if) each point $x \in X$ is either a G_{δ} -point or a P-point.

Theorem (Banakh-M., 2012)

A scattered compact Hausdorff space X is skeletally factorizable iff each non-P-point $x \in X$ lies in G_{δ} -subset $G \subset X'$ of X, where X' is the set of all non-isolated points of X.

- The segment of ordinals $[0, \kappa]$ is openly factorizable.
- The one-point compactification αD of an uncountable discrete space D is not skeletally factorizable.

A space X is scattered if each subspace of X has an isolated point. A point x of topological space X is a *P*-point if for any neighborhoods $U_n \subset X$, $n \in \omega$, the intersection $\bigcap_{n \in \omega} U_n$ is neighborhood of x in X.

Theorem (Banakh-Dimitrova, 2010)

A scattered (linearly ordered) compact space X is openly factorizable if (and only if) each point $x \in X$ is either a G_{δ} -point or a P-point.

Theorem (Banakh-M., 2012)

A scattered compact Hausdorff space X is skeletally factorizable iff each non-P-point $x \in X$ lies in G_{δ} -subset $G \subset X'$ of X, where X' is the set of all non-isolated points of X.

- The segment of ordinals $[0, \kappa]$ is openly factorizable.
- The one-point compactification αD of an uncountable discrete space D is not skeletally factorizable.

A space X is scattered if each subspace of X has an isolated point. A point x of topological space X is a *P*-point if for any neighborhoods $U_n \subset X$, $n \in \omega$, the intersection $\bigcap_{n \in \omega} U_n$ is neighborhood of x in X.

Theorem (Banakh-Dimitrova, 2010)

A scattered (linearly ordered) compact space X is openly factorizable if (and only if) each point $x \in X$ is either a G_{δ} -point or a P-point.

Theorem (Banakh-M., 2012)

A scattered compact Hausdorff space X is skeletally factorizable iff each non-P-point $x \in X$ lies in G_{δ} -subset $G \subset X'$ of X, where X' is the set of all non-isolated points of X.

- The segment of ordinals $[0, \kappa]$ is openly factorizable.
- The one-point compactification αD of an uncountable discrete space D is not skeletally factorizable.

Theorem (M., 2012)

A Lindelöf topological space X is skeletally factorizable iff X is the limit space lim S of an inverse spectrum $S = \{X_{\alpha}, \pi_{\alpha}^{\gamma}, A\}$ over an ω -directed index set A such that for every $\alpha \in A$ the space X_{α} is second countable and the limit projection $\pi_{\alpha} \colon X \to X_{\alpha}$ is skeletal and surjective. A functor $F : \mathbf{Comp} \to \mathbf{Comp}$ is skeletal if for each surjective skeletal map $f : X \to Y$ between compact Hausdorff spaces the map $Ff : FX \to FY$ is skeletal.

Theorem (M., 2012)

Each skeletal epimorphic continuous functor F: **Comp** \rightarrow **Comp** preserves the class of skeletally factorizable compacta.

Theorem (Banakh-Kucharski-M., 2012)

A normal functor F : **Comp** \rightarrow **Comp** is skeletal if and only if for every metrizable zero-dimensional compact space Z the map $Z \oplus 2 \rightarrow Z \oplus 1$ is skeletal.

→ 3 → 4 3

A functor $F : \mathbf{Comp} \to \mathbf{Comp}$ is skeletal if for each surjective skeletal map $f : X \to Y$ between compact Hausdorff spaces the map $Ff : FX \to FY$ is skeletal.

Theorem (M., 2012)

Each skeletal epimorphic continuous functor F: **Comp** \rightarrow **Comp** preserves the class of skeletally factorizable compacta.

Theorem (Banakh-Kucharski-M., 2012)

A normal functor F : **Comp** \rightarrow **Comp** is skeletal if and only if for every metrizable zero-dimensional compact space Z the map $Z \oplus 2 \rightarrow Z \oplus 1$ is skeletal.

同 ト イ ヨ ト イ ヨ ト

A functor $F : \mathbf{Comp} \to \mathbf{Comp}$ is skeletal if for each surjective skeletal map $f : X \to Y$ between compact Hausdorff spaces the map $Ff : FX \to FY$ is skeletal.

Theorem (M., 2012)

Each skeletal epimorphic continuous functor F: **Comp** \rightarrow **Comp** preserves the class of skeletally factorizable compacta.

Theorem (Banakh-Kucharski-M., 2012)

A normal functor F : **Comp** \rightarrow **Comp** is skeletal if and only if for every metrizable zero-dimensional compact space Z the map $Z \oplus 2 \rightarrow Z \oplus 1$ is skeletal.

A compact space X is called skeletally generated (resp. openly generated) if X is homeomorphic to the limit space of a continuous spectrum $\{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ indexed by a ω -complete directed set A and consisting of second countable spaces X_{α} and skeletal (open) bonding projections p_{α}^{β} .

Theorem (Daniel-Kune-Zhou, 1994)

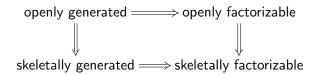
Each skeletally generated compact space has countable cellularity.

A compact space X is called skeletally generated (resp. openly generated) if X is homeomorphic to the limit space of a continuous spectrum $\{X_{\alpha}, p_{\alpha}^{\beta}, A\}$ indexed by a ω -complete directed set A and consisting of second countable spaces X_{α} and skeletal (open) bonding projections p_{α}^{β} .

Theorem (Daniel-Kune-Zhou, 1994)

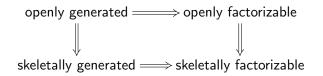
Each skeletally generated compact space has countable cellularity.

Relations between various classes of compacta



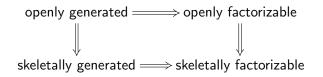
None of these implications can be reversed:

- βN is skeletally generated but not openly factorizable.
- $[0, \omega_1]$ is openly factorizable but not skeletally generated.



None of these implications can be reversed:

- $\beta \mathbb{N}$ is skeletally generated but not openly factorizable.
- $[0, \omega_1]$ is openly factorizable but not skeletally generated.



None of these implications can be reversed:

- $\beta \mathbb{N}$ is skeletally generated but not openly factorizable.
- $[0, \omega_1]$ is openly factorizable but not skeletally generated.

Thank you!

Marta Martynenko On skeletally factorizable spaces

э

э

< E